

RP/EGEAS OVERVIEW

Mr. Wah Sing Ng NG Planning LLC

Mr. Bill Fleck
Independent Consultant

EPRI Program 178b Webcast April 18, 2014

Part 1: Resource Planning Overview

Brief History of EGEAS

- Developed in 1983 as an EPRI research project
- Primary contractors Stone & Webster Engineering Corp. and MIT Energy Lab.
- Previous version release dates:

_ `	Version	1	– 1983	Initial	release
	V CI JIOI I		1000	minuai	1 CICASC

- Version 2 1985
 Storage optimization, Must-run, Spinning reserve
- Version 3 1986
 Purchase & sale contracts, Incremental costs
- Version 4 1989 Financial constraints
- Version 5 1990
 Fuel constraints, Multi-area modeling
- Version 6 1990 Emission Constraints, System average rate
- Version 7 1993 Revenues, Avoided costs, Risk analysis
- Version 8 1996 Multi-Parameter Gamma method
- Version 9 1997 Bid-based pricing

Brief History of EGEAS (Cont.)

- Up to version 9.02, EGEAS was maintained and licensed by Stone & Webster until December 1997
- After 1997, version 9.02 was maintained and licensed by EPRI
- Current version 10 April 2014, can be licensed from EPRI or NG Planning LLC
- Next version 11 Scheduled for April 2015

- Find "BEST" expansion plan to meet projected customer demands, taking into consideration:
 - Low cost energy
 - Acceptable system reliability
 - Operating system flexibility
 - Fuel supply security & diversity
 - Environmental regulations
 - Corporate financial health

- Low Cost Energy:
 - Capital costs of new plants
 - Operating costs of generation system
 - –Minimize sum of capital & operating costs

- Acceptable System Reliability:
 - –Loss-of-Load Probability: 1 day/10years
 - –Unserved or unmet energy: MWh/year
 - –Percent reserve margin: 15%

- Operating System Flexibility:
 - Mix of different types of resources
 - Baseload operates around the clock
 - Intermediate 8 to 12 hours per day
 - Peaking few hours per day

Characteristics	<u>Baseload</u>	<u>Intermediate</u>	<u>Peaking</u>
Operating Hours/day	24	8 – 12	1 -2
Operating Costs	Low	Medium	High
Capital Costs	High > \$2000	Medium \$800-\$1000	Low \$600-\$800
Plant Types	Coal Hydro	Gas CCs Hydro	Gas CTs Hydro
Typical Mix	50 – 70%	20 – 30%	10 – 20%

- Fuel supply security & diversity:
 - Fuel security
 - Dual fuel, multiple suppliers, multiple sources, etc.
 - -Fuel diversity
 - Nuclear, coal, natural gas, oil, hydro, wind, solar, etc.

Environmental Regulations

- Clean Air Act Amendments of 1990 (CAAA)
 - -SO₂, O₃, CO, and PM-10
- Recent EPA Regulations
 - –CWIS Cooling Water Intake Structures
 - –CCR Coal Combustion Residuals
 - -CSAPR Cross State Air Pollution Rule
 - –MATS Mercury and Air Toxics Standards
- Greenhouse Gases (GHG)
 - Carbon emissions reduction

Corporate Financial Health

- Investor-Owned Utilities
 - Financing requirements
 - Cash flow requirments
 - Level and quality of earnings
 - Dividends
- Municipal Agencies
 - Interest & other coverages
 - In-lieu of taxes

Classical Planning Method – Using Separate Planning Models

- Capacity or reliability model to determine new capacity requirements
- Production cost model to determine total system operating costs
- 3. Economic model to combine capacity and production costs on a present worth basis
- 4. Iterate steps 1-3 for different expansion plans, until you reach the approximate lowest cost plan

Optimization Method – Using a Single Planning Model Like EGEAS

- 1. Automates the classical planning method, and evaluates all possible combinations of plans to reach the least-cost plan
- 2. Input load forecast, costs and characteristics for existing resources and purchase power contracts and for all future potential planning options
- 3. Run the optimization model, sit back, relax, enjoy a cup of coffee, and get the right answers.

Integrated Resources Planning Process

RP WORKSTATION

- RPW (EPRI)
- EGEAS (EPRI)
- DSMLINK (EPRI)

Part 2: Overview of EGEAS

EGEAS - Overview

Electric
Generation
Expansion
Analysis
System

Version 10.0

EGEAS Software Components

EGEAS – Purpose and Functions

- Primary Purpose Find the optimum (least-cost) integrated resource plan for meeting demand by expanding both supply-side and demand-side resources
- Objective Functions:
 - Present value of revenue requirements
 - System levelized average rate

Optimization Methods

- Dynamic Program (DP) is based on the enumeration of all possible combinations of resource additions while meeting user-specified constraints.
- Generalized Bender's Decomposition is a nonlinear technique based on an iterative interaction between a linear master problem and a non-linear probabilistic production costing sub-problem.

Additional Optimization Methods

- Screening Curve Option Produces (cost by capacity factor) results for evaluating large numbers of alternatives.
- Pre-specified Pathway Option Provides more detailed analysis of an expansion plan than is computationally feasible within an optimization. Also allows user-defined plans to be analyzed.

Optimization Constraints Utilized

Reliability

- -Reserve margin maximum or minimum
- –Unmet energy maximum
- Loss-of-Load probability maximum

Tunneling

 Used to specify the upper and lower limits of the annual and/or cumulative number of resource additions available for consideration

Optimization Constraints (continued)

- Environmental
 - Optimize to a pollutant cap level
 - Incorporate system, site or unit limits
- Fuel use
 - -Limited fuel
 - -Target fuel use
 - –Take-or-pay fuel

Supply-Side Alternatives

- Thermal units
- Retirement of existing facilities
- Staged resources
- Life extension
- Hydro
- Storage
- Non-Dispatchable Technologies (NDT)

Demand-Side Management (DSM) Alternatives

- Conservation
- Load management
 - -Peak clipping
 - Load shifting
 - -Storage
 - -Rate design
- Strategic marketing

EGEAS – Additional Capabilities

- Purchase and sale contracts
- Interconnections with 9 other systems
- Avoided capacity and operating costs
- Customer class revenue and sales
- Environmental tracking and emissions dispatch for up to 8 user-defined variables

Production Costing Capabilities (1 of 3)

- Four capacity levels
 - Rated
 - Operating
 - Emergency
 - Reserve capacities
- Change capacity levels by year and month
- Up to five loading points or blocks
 - Capacities, heat rates and forced outages
- Automatic & fixed maintenance scheduling
- Spinning reserve designations and options

Production Costing Capabilities (3 of 3)

- Monthly fuel pricing & target limitations
 - -Minimum, maximum and target percentages
- Operating and maintenance costs
- Transmission and distribution costs
- Dispatch modifier costs
- Monthly limited energy data

Production Costing Capabilities (3 of 3)

- Monthly fuel pricing & target limitations
 - Minimum, maximum and target percentages
- Operating and maintenance costs
- Transmission and distribution costs
- Dispatch modifier costs
- Monthly limited energy data

NG Planning LLC - Services

- Commercial license with EPRI for EGEAS:
 - Sublicense EGEAS to new users
 - Provide RP consulting services using EGEAS
- Partnering with EPRI to make enhancements to EGEAS (Version 11, April 2014 – April 2015)
- Partnering with EPRI to expand EGEAS user base
- Provides maintenance & technical (M&T) support services for EGEAS program
- Provides setup and training services for EGEAS
- Coordinates EGEAS User Group meetings

NG Planning LLC - User Group Meetings

- Annual meeting typically late summer/early fall
- Schedule two half days to accommodate travel
- Participants open to all EGEAS users
- Past locations MISO offices in St Paul, MN
- Future locations open to suggestions/sponsors
- Purposes of user group meetings:
 - ➤ Provide a forum for users to exchange information on the use and application of EGEAS
 - Provide a forum for users to suggest and recommend improvements and new enhancements
 - ➤ Provide a forum to communicate with EPRI on current related research projects and funding availability

EGEAS Version 10 – Features

- Consolidation of one-stop licensing process (EPRI or NG Planning LLC)
- Consolidated EGEAS, User Interface, DSMLINK, and RPWorkstation programs
- Eliminated Finance+ and Riskmin programs which are not supported or used
- Added consistent EPRI copyright, logo, and disclaimers to all software
- All programs labeled as version 10.0
- Updated EGEAS Capabilities and all other User's manuals

EGEAS Version 11– Features

- Two new enhancements will be added:
 - Dump energy penalty factor
 - Add a penalty to the fuel and O&M costs for the energy that needs to be dumped
 - -Renewable portfolio standard (RPS) constraint
 - Ensure that a minimum percent of system generation is supplied by certain units
- Fix any known EGEAS program bugs
- Update user's manuals

EGEAS Applications in General

- Integrated Resource Planning (IRP) Studies
- Production cost analysis
- System reliability analysis
- Emissions compliance and planning
- Renewable portfolio standards analysis
- Plant life management analysis
- Existing plant retirement analysis
- IPP and Cogeneration proposal analyses
- Sensitivity and break-even cost analyses

Example EGEAS Applications in the U.S.

- MISO Regional Resource Forecasting, Demand-Side Resources, Renewable Portfolio Standards, EPA Regulations, Value Proposition, and others.
- WPL IRP study and CN application
- IPL IRP study and CN application
- WE IRP study and CN application
- WPS IRP study and CN application
- WPL/WPS/MGE Compliance planning study
- SMMPA IRP study
- PSC of WI Review IRP studies filed by utilities

Examples of EGEAS Applications - International

- Malaysia Long-range resource planning study
- Saudi Arabia Generation & transmission optimization
- Guam Long-range resource planning study
- Barbados Long-range resource planning study
- Egypt License for EGEAS, Resource planning study
- Israel License for EGEAS, Gas conversion study
- Thailand License for EGEAS
- Taiwan License for EGEAS
- Philippines License for EGEAS
- South Korea License for EGEAS
- South Africa License for EGEAS

Other Resource Optimization Models

- STRATEGIST by Ventyx
- MARKET POWER by Ventyx
- SYSTEM OPTIMIZER by Ventyx
- PLEXOS by Energy Exemplar
- AURORA by EPIS, Inc.
- UPLAN by LCG Consulting
- ENPEP (WASP) by Argonne National Labs

